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1. INTRODUCTION 

Autism is recognized as a multifaceted developmental condition that disrupts the brain's capacity to process information.  
It emphasizes characteristics such as deficient social skills, absence of eye contact, and repetitive behaviors (1). Social 
interaction may provide difficulties in sustaining eye contact, comprehending and articulating emotions, and exhibiting 
suitable facial expressions.  Researchers disclosed that children with autism display unique facial characteristics (2). These 
youngsters typically exhibit a wider upper face and a comparatively shorter midface region.  Timely identification is essential 
for delivering appropriate care and averting developmental complications.  Identifying autism is difficult due to its intricacy, 
resulting in diverse study methodologies, including facial recognition.  The emphasis on facial recognition arises from its 
function in identifying emotional states and differentiating between typical and atypical faces, hence facilitating successful 
autism detection (1). 

Intelligent systems that provide Artificial Intelligence (AI) functionalities typically utilise machine learning (ML) and deep 
learning (DL). Machine learning is the methodology via which systems acquire knowledge from designated training data 
pertinent to a certain issue, facilitating the automatic development of analytical models for connected tasks (3). It is 
classified into supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning (RL). 
Deep learning (DL) is regarded as a subset of artificial intelligence (AI) and can be perceived as an AI function that emulates 
the data processing methods of the human brain (4). The actual implementation of machine learning frequently 
necessitates the integration of deep learning as a fundamental component, employing its technology for tasks such as 
image or video categorisation, recognition, and identification. Among several deep learning architectures, Convolutional 
Neural Networks (CNNs) are very effective for picture categorisation, particularly in the early detection of autism spectrum 
disorder (ASD). Pre-trained CNN models, including VGG-16, GoogLeNet, and AlexNet, are extensively employed in image 
classification owing to their shown high accuracy. Deep learning can enhance the model's efficacy for a certain job by 
autonomously extracting image features. As a subset of machine learning, deep learning directly processes raw data by 
utilising artificial neural networks. Deep neural networks encompass all processing phases, including feature extraction 
and learning, to enable the development of end-to-end predictive models (5). Deep neural networks are defined by a 
hierarchical architecture comprising input and output layers, as well as hidden layers that function as representation-
learning algorithms. These networks can learn many representations of input data at multiple levels of abstraction. 
Nonetheless, they are prone to overfitting, especially in scenarios with limited training sets, necessitating datasets 
containing a considerable quantity of images for efficient training (5). 
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CNN is recognized as an exceptionally efficient instrument for picture categorization. CNN is a variant of ANN employed 
for image processing tasks, particularly in computer vision, where it is essential for object recognition in images (5). A 
Convolutional Neural Network (CNN) consists of an input layer, an output layer, and several hidden layers (6). Each neuron 
in a specific layer is interconnected with every neuron in the following layer. CNNs can autonomously identify significant 
features in the initial layers and refine image characteristics in subsequent layers to get precise image categorization. CNN 
enables automatic feature extraction through its mechanisms. Before that, the creation of an automated facial image 
categorization system for autistic children utilizing a CNN model could be pivotal in the detection of autism. 

Recent studies have focused on the development of automated facial recognition-based diagnostics for numerous 
conditions, including acromegaly (7), Down syndrome (8), Turner syndrome (9), facial paralysis (10), and autism spectrum 
disorder (ASD). The research in (11) concentrated on ASD studies and introduced VGG16, VGG19, ResNet18, 
ResNet101, and DenseNet161 as CNN models for the early detection of ASD utilizing facial image recognition techniques, 
while the study in (12) compared MobileNetV2 and a hybrid VGG-19 to create a face recognition system leveraging transfer 
learning. The findings in (12) demonstrate that MobileNet-V2 attains the highest accuracy of 92%. The MobileNet-V1 model 
has been enhanced, as detailed in (1), to improve the accuracy of detecting children with ASD. Nonetheless, no prior 
studies have suggested a comparison of the performances of MobileNet, GoogleNet, and VGG-16, on the identical ASD 
dataset. This study focused on creating an algorithm that identify children with ASD from photographs in the Kaggle dataset, 
utilizing three proven and robust CNN models: MobileNet, GoogleNet, and VGG-16. The performance of each model was 
subsequently evaluated. 
 

2. METHODOLOGY 

2.1 Main Framework 

The software implementation is based on the Python programming language. Figure 1 depicts the comprehensive workflow 
of the project methodology. The project commences with the collecting and preprocessing of data from the Kaggle Autistic 
Children Facial Dataset utilized in this endeavour. A CNN model was constructed utilizing transfer learning, followed by 
the use of various pretraining models to identify autism from face photos. The performance of each training was assessed 
and validated, encompassing accuracy, sensitivity, and specificity through assessment criteria. 
 

 
 

Figure 1.  Project’s workflow. 
 
 

2.2 Data Collection and Preprocessing 

This study analysed facial images of children with autism and normal children obtained from the publicly accessible Kaggle 
website. The Kaggle dataset titled Autistic Children Facial Dataset has 2,936 facial images (1468 for autism spectrum 
disorder and 1468 for normal). Images of children with autism were sourced from websites pertaining to autism spectrum 
disorder, whilst images of children without autism were randomly obtained from the Internet. The dataset preprocessing, 
conducted by the dataset creator, involved the elimination of duplicate photos and cropping to focus just on the face. The 
dataset comprised 1288 photos for training, 140 for validation, and 40 for testing. The dataset has been divided into an 
80:20 ratio, with 80% of the photos allocated for training and validation, and 20% designated for evaluating the model's 
performance, as referenced in (13).    
 

2.3 CNN Development and Pretraining Models 

A CNN model for categorising autistic and non-autistic children was created utilizing a transfer learning methodology with 
pre-trained models, specifically MobileNet, GoogLeNet, and VGG16. The models were trained in the cloud using the 
Google Colab environment with the Python language, which supports deep learning libraries like TensorFlow. The 
procedure commenced with the preparation and downloading of the dataset on Google Colab. As previously stated, 80% 
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of the photos were allocated for model training, while the remaining 20% were designated for model testing. Google Drive 
was implemented to facilitate the storage and retrieval of the dataset, hence enhancing data interaction. This facilitated 
the straightforward loading of the dataset into the workspace. This stage involved establishing the routes for the training, 
validation, and test datasets, organizing the dataset into directories with distinct files for each class: 'Autism' and 'Non-
Autism'. 

Upon loading the photos from the folders, TensorFlow's image_dataset_from_directory function was employed to 
transform them into datasets.  This function autonomously assigns labels to photos according to directory names and 
randomizes their order to facilitate training.  All photos were downsized to a uniform dimension of 224x224 pixels with three 
colour channels (224x224x3) to ensure uniformity and fulfil model specifications.  The pre-trained network was 
subsequently imported into Google Colab to commence the training process.  During this procedure, each model was 
initialized with weights pre-trained on the ImageNet dataset, omitting the top layers to utilize their feature extraction 
capabilities.  The input photos underwent preprocessing utilizing the preprocess input function specific to each model.  This 
function normalizes the image pixel values to guarantee compatibility with the pre-trained model.  

The selected loss function was categorical cross-entropy, and the Adam optimizer operated at a learning rate of 
0.00005. A diminished learning rate was employed to guarantee consistent and gradual modifications to the model weights. 
The cross-entropy loss function assesses the architecture's performance, whereas SoftMax is utilized in the classification 
layer. Optimizers are algorithms that adjust a neural network's weights and learning rate to minimize losses (14). Numerous 
types of optimizers are available, including Adagrad, Momentum, Gradient Descent, and RMSProp. This paper employed 
the Adaptive Moment Estimation (Adam) optimizer. Backpropagation can be executed via mini-batch gradient descent 
utilizing the Adam optimizer algorithm (15). The models underwent training for 100 epochs, with a batch size of 32, to 
ascertain the optimal epoch count for maximum testing accuracy. Throughout the training phase, the learning curve was 
delineated to avert the development of an overfitted model. Among all the models, VGG-16 required the most time to 
complete training due to its extensive architecture, followed by MobileNet and GoogleNet. The model underwent evaluation 
following the conclusion of network training. 
 

2.3.1 MobileNet 

MobileNet, intended for mobile and embedded vision applications, utilizes depth-wise separable convolutions to create 
deeper neural networks with a diminished size (16). The MobileNet design employs depth-wise convolution succeeded by 
pointwise convolution using a 1 x 1 filter to consolidate outputs and reduce model size, hence enhancing its lightweight 
nature. ReLU and batch normalization are employed in depth-wise separable convolution to mitigate nonlinearity between 
the two layers. The pre-trained weights from the ImageNet dataset are loaded via keras.applications, the input shape is 
defined, and the fully connected layer at the apex is omitted. This setup enables the incorporation of an additional output 
layer for feature extraction and training purposes. Subsequently, the weights are immobilized to retain information across 
training sessions. A Global Average Pooling layer is incorporated into the original MobileNet model to diminish spatial 
dimensions and formulate the new model. This option is favoured over Flatten to mitigate excessive parameters and the 
risk of overfitting. Dense layers are incorporated into the fully connected layers, facilitating the transfer of outputs from 
preceding layers to the neurons in the current layer, hence enabling the acquisition of intricate functions. Each dense layer 
is paired with a ReLU activation function that outputs the input value if it is positive; else, it returns zero. The Adam 
optimizer, a stochastic gradient descent method that incorporates adaptive first- and second-order estimations, is employed 
to develop the created model. Binary cross-entropy was chosen as the loss function, as it evaluates probabilities against 
real class values. The input layer of MobileNet has a pixel dimension of 224 × 224 (17). 
 

2.3.2 GoogleNet 

GoogleNet is an advanced CNN architecture characterised by a sophisticated design that introduced the "Inception" 
module. This module efficiently generates a singular filter by amalgamating filters of varying sizes. The GoogleNet 
architecture comprises nine inception layers, two pooling layers, and two convolutional layers. Each inception layer has six 
convolutional layers and one pooling layer (18). 
 

2.3.3 VGG-16 

The VGG-16 network was trained utilising the ImageNet database. Despite constrained image datasets, the VGG-16 
network has exceptional accuracy due to its extensive training. The VGG-16 architecture features a limited receptive field 
of 3 × 3 and comprises 16 convolutional layers. It contains a maximum pooling layer of dimensions 2 × 2 and comprises a 
total of five such layers. After the final Max pooling layer, three fully connected layers are present. The final layer employs 
the softmax classifier. ReLU activation has been applied to each hidden layer (19).                 
   

2.4 Performance Evaluation 

The metrics specified in Equations 1 to 3 were employed to evaluate the models' efficacy. The classification was based on 
a confusion matrix that categorised all test dataset images into four groups: True Positive (TP), True Negative (TN), False 
Negative (FN), and False Positive (FP) (13). 
 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 

 
(1) 
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(3) 

 
A confusion matrix is a tabular representation that evaluates the classification performance of a model, notably in binary 

classification, such as models used to differentiate between ASD and typically developed (TD). TP denotes instances 
where the model correctly identified an image as positive or ASD, TN signifies cases where the model accurately classified 
an image as TD or negative, FP indicates occurrences where the model erroneously categorised a TD image as ASD, and 
FN refers to situations where the system mistakenly classified an ASD image as TD.  This method serves as an essential 
instrument for evaluating the system's performance and providing insights into strengths and flaws. The combinations of 
true positives (TP), true negatives (TN), false negatives (FN), and false positives (FP) in the confusion matrix yield 
performance indicators such as accuracy, sensitivity, and specificity.  Accuracy represents the overall percentage of correct 
predictions made by the model for both positive and negative classifications. Nonetheless, in the presence of an 
unbalanced dataset, accuracy may be deceptive as it provides a superficial assessment of the model's efficacy. Sensitivity 
is the measure employed to evaluate a model's predictive capability for true positives within each available category [20]. 
It assesses the model's capacity to identify positive or target classes. A low false negative rate signifies high sensitivity in 
the model. Specificity is the measure employed to evaluate a model's ability to accurately predict true negatives for each 
accessible category (20). The model's specificity indicates its ability to differentiate between negative (or non-target) 
classes. A high specificity of the model signifies a low false positive rate. These metrics provide a comprehensive 
assessment of the system's precision in categorizing photos into the correct classifications. Each statistic offers a distinct 
perspective that assists researchers in evaluating different systems based on their categorizations capabilities and drawing 
informed judgements. 

 

3. RESULTS AND DISCUSSION 

3.1 Confusion Matrix 

The performance of MobileNet, GoogleNet, and VGG-16 is illustrated in the confusion matrix utilizing a testing dataset 
including 40 photos per class, as depicted in Figures 2 to 4.  The confusion matrix utilized in this study indicates that the 
horizontal axis reflects the number of categories for the predicted labels, while the vertical axis denotes the quantity of data 
corresponding to the genuine labels. This denotes that the values of the matrix at (0,0), (1,0), (0,1), and (1,1) correspond 
to TP, FP, FN, and TN, respectively. The accuracy rate is determined by dividing the total number of test sets by the sum 
of the diagonal elements, which signifies the count of model predictions that align with the data labels. In the visualization 
results, a higher value on the diagonal signifies greater accuracy, while a deeper hue denotes a more precise prediction 
by the model within that category. Elements off the diagonal signify misclassifications, highlighting regions where the model 
erred in its predictions. 

The confusion matrix of MobileNet demonstrates a highly efficient classification ability, as illustrated in Figure 2. 
MobileNet accurately identifies a significant quantity of photos in both categories, yielding 39 true positives and 36 true 
negatives. The FP count of 4 signifies that several non-autistic photos were erroneously categorized as autistic. 
Conversely, a singular instance of an autistic image was erroneously categorized as non-autistic, as evidenced by the false 
negative count of one. The results indicate that MobileNet has a relatively low misclassification rate for non-autistic photos 
while showing exceptional accuracy in recognizing autistic images. 

GoogleNet exhibits a somewhat unique performance profile. Figure 3 illustrates that the categorizations proficiency is 
robust yet not flawless, as evidenced by 35 true positives and 37 true negatives. In comparison to MobileNet, the model 
demonstrates a higher incidence of 5 false negatives, indicating a greater failure to identify autistic imagery. The FP count 
of 3, however, is marginally lower than that of MobileNet, suggesting enhanced efficacy in averting the erroneous 
classification of non-autistic photos. The TP rate is inferior to that of MobileNet, suggesting a greater challenge in reliably 
identifying all instances of autism, notwithstanding the variations in sensitivity and specificity. The VGG-16 confusion matrix 
offers a precise assessment of its classification efficacy, as depicted in Figure 4. VGG-16 effectively differentiates between 
autistic and non-autistic images, achieving 38 true positives and 37 true negatives. The FP count of 3 is analogous to 
GoogleNet, whilst the FN count of 2 surpasses GoogleNet but is inferior to MobileNet. The results indicate the dependable 
efficacy of VGG-16, reaching an optimal equilibrium between sensitivity and specificity. VGG-16 is a robust choice for 
balanced classification performance because to its enhanced ability to reliably identify autistic cases, as seen by its 
marginally reduced false negative rate in comparison to GoogleNet.   
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Figure 2.  Confusion matrix of MobileNet. 
 

 
 

Figure 3.  Confusion matrix of GoogleNet. 
 

 
 

Figure 4.  Confusion matrix of VGG-16. 
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3.2 Performance Metrics of MobileNet, GoogleNet and VGG-16 

The three deep learning models, MobileNet, GoogleNet, and VGG-16, were assessed using key performance metrics such 
as accuracy, sensitivity, and specificity to classify photos into autistic and non-autistic categories over 100 epochs, as 
presented in Table 1. These metrics offer a thorough insight into the reliability and effectiveness of each model in this 
essential application.  

Table 1. Performance Matrices of MobileNet, GoogleNet and VGG-16 over 100 epochs. 

Model Accuracy Sensitivity Specificity 

MobileNet 0.94 0.97 0.90 

GoogleNet 0.90 0.88 0.93 

VGG-16 0.94 0.95 0.93 

 
MobileNet has exceptional efficacy, with an accuracy of 0.94. This signifies that 94% of the photos are accurately 

categorised by MobileNet. The sensitivity of 0.97 is noteworthy, indicating that it can reliably detect 97% of images related 
to autism. The elevated sensitivity demonstrates that MobileNet is an invaluable instrument for early diagnosis, signifying 
its outstanding reliability in identifying cases of autism. Moreover, MobileNet accurately identifies 90% of non-autistic 
photos, as indicated by its specificity of 0.90, while it exhibits a little higher false positive rate compared to the other models. 
Comprehensive performance metrics underscore MobileNet's resilience and efficacy in distinguishing between autistic and 
non-autistic images.   

GoogleNet demonstrates marginally inferior metrics compared to MobileNet, however both systems display robust 
performance. This model correctly detects 90% of the photos, achieving an accuracy of 0.90, which, although inferior to 
other models, still a respectable rate. With a sensitivity of 0.88, it identifies 88% of photos depicting autism, suggesting a 
greater proportion of undetected autism cases relative to MobileNet. Nonetheless, GoogleNet offsets this with a specificity 
of 0.93, signifying its superior ability to reliably differentiate non-autistic images compared to MobileNet. Due to this 
equilibrium, GoogleNet is a dependable model, particularly in contexts where the reduction of false positives is critical; but 
its diminished sensitivity may restrict its efficacy in identifying all cases of autism.   

VGG-16 achieves an accuracy of 0.94, demonstrating consistent and superior performance across all metrics. The 
sensitivity of 0.95 signifies a robust ability to accurately identify 95% of autistic cases. This indicates that VGG-16 effectively 
lowers the number of false negatives by accurately identifying most autistic cases. Moreover, VGG-16 achieves a specificity 
of 0.93, comparable to GoogleNet, demonstrating its reliability in categorizing photos that are not indicative of autism. 
VGG-16 is an excellent choice for a balanced classification task due to its equilibrium between sensitivity and specificity, 
ensuring high detection rates of autistic cases while minimizing false positives.  

Comparing these three models demonstrates that MobileNet is the most effective, followed by VGG-16 and GoogleNet, 
in recognizing all autistic instances and accurately classifying photos into autistic and non-autistic categories, owing to its 
superior sensitivity of 0.97. This heightened sensitivity is essential for prompt and accurate diagnosis. MobileNet attains a 
high accuracy of 0.94, equaling VGG-16 and exceeding GoogleNet, so demonstrating its robustness and efficacy in general 
classification tasks. VGG-16 demonstrates robust performance with an accuracy of 0.94, a sensitivity of 0.95, and a 
specificity of 0.93, establishing it as a dependable and adaptable choice. GoogleNet demonstrates a sensitivity of 0.88, 
signifying a higher rate of missed autism cases. Nevertheless, an accuracy of 0.90 and a specificity of 0.93 demonstrate 
its efficacy in minimizing false positives. 

 

4. CONCLUSION 

This work sought to model CNN Deep Learning for the detection of faces of children with autism utilising facial photographs 
from the Kaggle dataset. The efficacy of pre-trained models MobileNet, GoogleNet, and VGG-16 in categorizing photos 
into autistic and non-autistic groups was evaluated. This study significantly advances the field of early autism identification 
via facial recognition by elucidating the strengths and weaknesses of current models.   

The findings reveal that the accuracy, sensitivity, and specificity of the three CNN models—MobileNet, GoogleNet, and 
VGG-16—exhibited robust performance. Of the models evaluated, MobileNet demonstrated the highest efficacy, attaining 
an accuracy of 0.94, sensitivity of 0.97, and specificity of 0.90. The model's high sensitivity is particularly significant as it 
underscores MobileNet's reliability in identifying autism cases, which is crucial for quick and accurate identification. VGG-
16 exhibited robust performance, effectively balancing sensitivity and specificity for classification tasks. Despite 
GoogleNet's marginally lower performance, it effectively minimised false positives owing to its superior specificity. 

The study concludes that CNN models, especially MobileNet, are highly useful for the early identification of autism via 
facial recognition. Utilising pre-trained models on extensive datasets can yield high accuracy and reliability in classification 
jobs. The findings endorse the implementation of these intelligent technologies in clinical environments to facilitate early 
intervention and enhance outcomes for children with autism. Future research should focus on enhancing the detection 
skills and resilience of these models by increasing the dataset and investigating various deep learning architectures.      
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