Classification of Lung Cancer Stages from CT Scan Images Using Image Processing and k-Nearest Neighbours

Authors

  • Mohd Firdaus Abdullah Universiti Teknologi MARA
  • Siti Noraini Sulaiman Universiti Teknologi MARA
  • Muhammad Khusairi Usman Universiti Teknologi MARA
  • Nor Khairiah A. Karim Universiti Sains Malaysia
  • Ibrahim Lutfi Shuaib Universiti Sains Malaysia
  • Muhamad Daniyal Irfan Alhamdu Universiti Teknologi MARA
  • Adi Izhar Che Ani Universiti Teknologi MARA

DOI:

https://doi.org/10.11113/humentech.v1n1.6

Keywords:

Lung cancer, Image processing, Filtering, k-Nearest Neighbors, Feature selection

Abstract

Lung cancer is the prevalent cause of death among people around the world. The detection of the existence of lung cancer can be performed in a variety of ways, such as magnetic resonance imaging (MRI), radiography, and computed tomography (CT). Such techniques take up a lot of time and financial resources. Nevertheless, for the detection of lung cancer, CT provides a lower cost, fast imaging time, and increased availability. Early diagnosis of lung cancer may help physicians treat patients to minimize the number of deaths. This paper revolves around the categorization of lung cancer stages from CT scan images using image processing and k-Nearest Neighbor. The central objective of this study is therefore to establish an image processing technique for extracting features of lung cancer from CT scan images. Extracting the features from the segmented image can help to detect cancer inside the lung. The purposed method comprises the following steps by using image processing techniques: data collection, data pre-processing, features selection, and lung cancer classification. The pre-processing was done using a median filter to remove noise contained in the images. Three features need to be extracted which are area, perimeter, and centroid. Finally, the set of data with these features were used as inputs for lung cancer classification. By analysis results, the kNN method has a high accuracy of 98.15%.

Published

06-02-2022

How to Cite

Abdullah, M. F., Sulaiman, S. N. ., Usman, M. K. ., A. Karim, N. K., Shuaib, I. L., Alhamdu, M. D. I. ., & Che Ani, A. I. (2022). Classification of Lung Cancer Stages from CT Scan Images Using Image Processing and k-Nearest Neighbours. Journal of Human Centered Technology, 1(1), 10–17. https://doi.org/10.11113/humentech.v1n1.6

Issue

Section

Articles

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.